手把手教你做单细胞测序数据分析(六)——组间差异分析及可视化

分享
源代码 2024-9-5 23:22:33 132 0 来自 中国
往期回顾:
在前面的课程中我们已经举行过“单样本数据分析”、“多样本数据整合”、“细胞类型解释”等内容的学习,信任各人现在已经能够对单细胞测序数据分析流程及Seurat对象的根本布局拥有了肯定的相识。这一讲紧张领导各人举行组间差异的盘算及可视化方法的学习,这部分内容能够资助科研工作者直接证明该数据集的前期试验计划,从前期枯燥的数据预处置惩罚走向文章中的Figure!
视频教程:
保姆级教程 《手把手教你做单细胞测序数据分析》(六)——组间差异分析及可视化
(B站同步播出,先看一遍视频再跟着代码一起利用,发起每个视频至少看三遍)
代码:
测试数据与第四讲多样本整合雷同:
读入并查抄数据

library(Seurat)## Attaching SeuratObjectlibrary(dplyr)## ## 载入程辑包:'dplyr'## The following objects are masked from 'package:stats':## ##     filter, lag## The following objects are masked from 'package:base':## ##     intersect, setdiff, setequal, unionpbmc <- readRDS('pbmcrenamed.rds')pbmc## An object of class Seurat ## 22254 features across 900 samples within 2 assays ## Active assay: RNA (20254 features, 0 variable features)##  1 other assay present: integrated##  3 dimensional reductions calculated: pca, umap, tsneDimPlot(pbmc) 1.png names(pbmc@meta.data)## [1] "orig.ident"               "nCount_RNA"              ## [3] "nFeature_RNA"             "percent.mt"              ## [5] "group"                    "integrated_snn_res.0.025"## [7] "seurat_clusters"          "celltype.group"          ## [9] "celltype"unique(pbmc$group)## [1] "C57" "AS1" "3"DimPlot(pbmc,split.by = 'group') 2.png 差异分析
pbmc$celltype.group <- paste(pbmc$celltype, pbmc$group, sep = "_")pbmc$celltype <- Idents(pbmc)Idents(pbmc) <- "celltype.group"mydeg <- FindMarkers(pbmc,ident.1 = 'VSMC_AS1',ident.2 = 'VSMC_C57', verbose = FALSE, test.use = 'wilcox',min.pct = 0.1)head(mydeg)##               p_val avg_log2FC pct.1 pct.2  p_val_adj## Cd24a  6.327111e-07  1.4046048 0.500 0.016 0.01281493## Spta1  9.387127e-07  0.3391453 0.375 0.000 0.01901269## Lum    9.387127e-07  3.8953383 0.375 0.000 0.01901269## Gda    9.387127e-07  0.6064680 0.375 0.000 0.01901269## Isg20  6.651476e-06  1.4016408 0.500 0.032 0.13471900## Hbb-bt 7.937909e-06  4.3779094 0.500 0.032 0.16077441解放生产力 通过循环自动盘算差异基因
cellfordeg<-levels(pbmc$celltype)for(i in 1:length(cellfordeg)){  CELLDEG <- FindMarkers(pbmc, ident.1 = paste0(cellfordeg,"_P3"), ident.2 = paste0(cellfordeg,"_AS1"), verbose = FALSE)  write.csv(CELLDEG,paste0(cellfordeg,".CSV"))}list.files()##  [1] "B cell.CSV"                 "EC.CSV"                    ##  [3] "Fibro.CSV"                  "Macro.CSV"                 ##  [5] "Mono.CSV"                   "Myeloid cells.CSV"         ##  [7] "Neut.CSV"                   "pbmcrenamed.rds"           ##  [9] "T cell.CSV"                 "VSMC.CSV"                  ## [11] "组间差异分析及可视化.html"  "组间差异分析及可视化.Rmd"  ## [13] "组间差异分析及可视化_files" "组间差异及可视化.r"差异分析解果解读:
可视化方法
library(dplyr)top10 <- CELLDEG  %>% top_n(n = 10, wt = avg_log2FC) %>% row.names()top10##  [1] "Thbs1"    "Acta2"    "Myl9"     "Tagln"    "Ccn2"     "lvap"   ##  [7] "Igfbp7"   "Ifi27l2a" "Dcn"      "Gdf15"pbmc <- ScaleData(pbmc, features =  rownames(pbmc))## Centering and scaling data matrixDoHeatmap(pbmc,features = top10,size=3) 4.png Idents(pbmc) <- "celltype"VlnPlot(pbmc,features = top10,split.by = 'group',idents = 'EC')## The default behaviour of split.by has changed.## Separate violin plots are now plotted side-by-side.## To restore the old behaviour of a single split violin,## set split.plot = TRUE.##       ## This message will be shown once per session.FeaturePlot(pbmc,features = top10,split.by = 'group')#DotPlot(pbmc,features = top10,split.by ='group')#默认只有两种颜色DotPlot(pbmc,features = top10,split.by ='group',cols = c('blue','yellow','pink')) 7.png 提取表达量,用ggplot2 DIY一个箱线图
####提取表达量#######mymatrix <- as.data.frame(pbmc@assays$RNA@data)mymatrix2<-t(mymatrix)%>%as.data.frame()mymatrix2[,1]<-pbmc$celltypecolnames(mymatrix2)[1] <- "celltype"mymatrix2[,ncol(mymatrix2)+1]<-pbmc$groupcolnames(mymatrix2)[ncol(mymatrix2)] <- "group"#绘图library(ggplot2)p1<- ggplot2::ggplot(mymatrix2,aes(x=celltype,y=Thbs1,fill=group))+  geom_boxplot(alpha=0.7)+  scale_y_continuous(name = "Expression")+  scale_x_discrete(name="Celltype")+  scale_fill_manual(values = c('DeepSkyBlue','Orange','pink'))p1#########另一种提取方法########Idents(pbmc) <- colnames(pbmc)mymatrix <- log1p(AverageExpression(pbmc, verbose = FALSE)$RNA)mymatrix2<-t(mymatrix)%>%as.data.frame()mymatrix2[,1]<-pbmc$celltypecolnames(mymatrix2)[1] <- "celltype"mymatrix2[,ncol(mymatrix2)+1]<-pbmc$groupcolnames(mymatrix2)[ncol(mymatrix2)] <- "group"library(ggplot2)p2<- ggplot2::ggplot(mymatrix2,aes(x=celltype,y=Thbs1,fill=group))+  geom_boxplot(alpha=0.7)+  scale_y_continuous(name = "Expression")+  scale_x_discrete(name="Celltype")+  scale_fill_manual(values = c('DeepSkyBlue','Orange','pink')) 9.png ###比较一下两种方法,发现并没有差异library(patchwork)p1|p2往期回顾
单细胞数据分析系列教程:
B站视频,先看一遍视频再去看推送利用,发起至少看三遍:https://www.bilibili.com/video/BV1S44y1b76Z/
单细胞测序根本数据分析保姆级教程,代码部分整理在往期推送之中:
手把手教你做单细胞测序数据分析(一)——绪论
手把手教你做单细胞测序数据分析(二)——各类输入文件读取
手把手教你做单细胞测序数据分析(三)——单样天职析
手把手教你做单细胞测序数据分析(四)——多样本整合
手把手教你做单细胞测序数据分析(五)——细胞类型解释
欢迎关注同名公众号~
您需要登录后才可以回帖 登录 | 立即注册

Powered by CangBaoKu v1.0 小黑屋藏宝库It社区( 冀ICP备14008649号 )

GMT+8, 2024-12-22 19:04, Processed in 0.180137 second(s), 35 queries.© 2003-2025 cbk Team.

快速回复 返回顶部 返回列表