一、媒介
本文紧张内容
1、surfaceflinger初始化流程;
2、surfaceflinger消息机制;
3、surfaceflinger绘制流程;
4、VSync分发流程
surfaceFlinger由init历程启动,独立历程运行,它接受来自多个泉源的数据缓冲区,对它们举行合成,然后发送到体现装备。
简述体现过程
1>、一个页面,一样平常分为三个window,状态栏、app和导航栏,每个window看作要体现的一层,windowManager体现时,哀求surfaceflinger为每个window创建衣蛾surface(layer)来绘制体现
每一个体现layer层,我们看作一个bufferqueue缓存队列。surfaceflinger合成bufferqueue,合成后送到Hardware Composer体现。
2>、体现按照肯定革新率更新画面,手机平板通常为60fps(16.6ms体现一次),一次革新由vsync信号发起,surfaceflinger吸收到信号后构造这一次革新体现。
3>、当 VSYNC 信号到达时,SurfaceFlinger 会遍历它的层列表,以探求新的缓冲区。如果找到新的缓冲区,它会获取该缓冲区;
否则,它会继续使用从前获取的缓冲区。SurfaceFlinger 必须始终体现内容,因此它会保存一个缓冲区。如果在某个层上没有提交缓冲区,则该层会被忽略。
备注:本文只列出关键代码,关键流程。
二、surfaceflinger启动流程
2.1、main入口
surfaceflinger.rc由init.rc启动,main_surfaceflinger.cpp main函数为启动入口 int main(int, char**) { startGraphicsAllocatorService(); // instantiate surfaceflinger sp<SurfaceFlinger> flinger = surfaceflinger::createSurfaceFlinger(); // initialize before clients can connect flinger->init(); // publish surface flinger sp<IServiceManager> sm(defaultServiceManager()); sm->addService(String16(SurfaceFlinger::getServiceName()), flinger, false, IServiceManager: UMP_FLAG_PRIORITY_CRITICAL | IServiceManager: UMP_FLAG_PROTO); flinger->run();}提炼此中紧张三件变乱,紧张还是一个surfaceFlinger的创建
1、createSurfaceFlinger并init(陪同onFirstRef)
2、addService到上层
3、进入消息循环
2.2、surfaceflinger构造
class SurfaceFlinger : public BnSurfaceComposer, public PriorityDumper, private IBinder: eathRecipient, private HWC2::ComposerCallback, private ISchedulerCallback {SurfaceComposer继续自BnSurfaceComposer,即为实现了ISurfaceComposer接口的Bn服务端;
Dump信息PriorityDumper;
殒命关照DeathRecipient,当Binder服务端步调挂掉后,可以关照给绑定的Binder客户端步调;
实现了HWC2的ComposerCallback回调,监听Composer HAL的一些变乱,比如Hotplug, Vsync ...
2.3、消息队列SurfaceFlinger: nFirstRef
这里引出surfaceflinger重点之一surfaceflinger的消息队列。后面单独讲
SurfaceFlinger继续RefBase类,以是此处一旦new出对象赋给sp指针后,将立刻触发SurfaceFlinger类的onFirstRef方法的调用。
void SurfaceFlinger: nFirstRef() { mEventQueue->init(this);}2.4、SurfaceFlinger::init
// Do not call property_set on main thread which will be blocked by init// Use StartPropertySetThread instead.void SurfaceFlinger::init() { // Get a RenderEngine mCompositionEngine->setRenderEngine(renderengine::RenderEngine::create( renderengine::RenderEngineCreationArgs::Builder() .setPixelFormat(static_cast<int32_t>(defaultCompositionPixelFormat)) .setImageCacheSize(maxFrameBufferAcquiredBuffers) .setUseColorManagerment(useColorManagement) .setEnableProtectedContext(enable_protected_contents(false)) .setPrecacheToneMapperShaderOnly(false) .setSupportsBackgroundBlur(mSupportsBlur) .setContextPriority( useContextPriority ? renderengine::RenderEngine::ContextPriority::REALTIME : renderengine::RenderEngine::ContextPriority::MEDIUM) .build())); // 创建HWComposer,通过mCompositionEngine->setHwComposer设置对象属性,并注册回调 mCompositionEngine->setTimeStats(mTimeStats); mCompositionEngine->setHwComposer(getFactory().createHWComposer(mHwcServiceName)); mCompositionEngine->getHwComposer().setCallback(this); ClientCache::getInstance().setRenderEngine(&getRenderEngine()); // 任何初始热插拔和体现更改的结果 processDisplayHotplugEventsLocked(); const auto display = getDefaultDisplayDeviceLocked(); LOG_ALWAYS_FATAL_IF(!display, "Missing internal display after registering composer callback."); const auto displayId = display->getPhysicalId(); LOG_ALWAYS_FATAL_IF(!getHwComposer().isConnected(displayId), "Internal display is disconnected."); // 初始化display initializeDisplays(); // 开启一个设置属性的线程 if (mStartPropertySetThread->Start() != NO_ERROR) { ALOGE("Run StartPropertySetThread failed!"); }}init方法紧张做了这么几件变乱:
1、创建一个RenderEngine
2、创建HWComposer,通过mCompositionEngine->setHwComposer设置对象属性,并注册回调
3、处理处罚Display体现屏幕的热插拔
4、初始化体现装备
5、开启设置属性线程
2.5、SurfaceFlinger::run
main函数中末了一步,run开启无穷循环等待消息
void SurfaceFlinger::run() { while (true) { mEventQueue->waitMessage(); }}2.5小结
上面五个小点总结了surfaceflinger的初始化过程。团体来说初始化更多还是对象的创建,要更加深入的明白surfaceflinger,
我们还应该分析一些紧张流程出来明白。如许才有助于明白surfaceflinger在绘制过程中如何承上启下
三、Surfaceflinger消息队列
在surafceflinger的构造函数中初始化
SurfaceFlinger::SurfaceFlinger(Factory& factory, SkipInitializationTag) : ... mEventQueue(mFactory.createMessageQueue()), //framework/native/services/surfaceflinger/SurfaceFlingerDefaultFactory.cpp/frameworks/native/services/surfaceflinger/Scheduler/MessageQueue.h //frameworks/native/services/surfaceflinger/Scheduler/MessageQueue.cppstd::unique_ptr<MessageQueue> DefaultFactory::createMessageQueue() { return std::make_unique<android::impl::MessageQueue>();}//framework/native/services/surfaceflinger/Scheduler/MessageQueue.hclass MessageQueue {public: enum { INVALIDATE = 0, REFRESH = 1, }; virtual ~MessageQueue() = default; virtual void init(const sp<SurfaceFlinger>& flinger) = 0; virtual void initVsync(scheduler::VSyncDispatch&, frametimeline::TokenManager&, std::chrono::nanoseconds workDuration) = 0; virtual void setDuration(std::chrono::nanoseconds workDuration) = 0; virtual void setInjector(sp<EventThreadConnection>) = 0; virtual void waitMessage() = 0; virtual void postMessage(sp<MessageHandler>&&) = 0; virtual void invalidate() = 0; virtual void refresh() = 0; virtual std: ptional<std::chrono::steady_clock::time_point> nextExpectedInvalidate() = 0;};如上代码,surfaceflinger消息队列中,紧张的两个变乱,INVALIDATE和REFRESH
// framework/native/services/surfaceflinger/Scheduler/MessageQueue.cppvoid MessageQueue::Handler::dispatchRefresh() { if ((mEventMask.fetch_or(eventMaskRefresh) & eventMaskRefresh) == 0) { mQueue.mLooper->sendMessage(this, Message(MessageQueue::REFRESH)); }}void MessageQueue::Handler::dispatchInvalidate(int64_t vsyncId, nsecs_t expectedVSyncTimestamp) { if ((mEventMask.fetch_or(eventMaskInvalidate) & eventMaskInvalidate) == 0) { mVsyncId = vsyncId; mExpectedVSyncTime = expectedVSyncTimestamp; mQueue.mLooper->sendMessage(this, Message(MessageQueue::INVALIDATE)); }}void MessageQueue::Handler::handleMessage(const Message& message) { switch (message.what) { case INVALIDATE: mEventMask.fetch_and(~eventMaskInvalidate); mQueue.mFlinger->onMessageReceived(message.what, mVsyncId, mExpectedVSyncTime); break; case REFRESH: mEventMask.fetch_and(~eventMaskRefresh); mQueue.mFlinger->onMessageReceived(message.what, mVsyncId, mExpectedVSyncTime); break; }}消息队列又处理处罚回surfaceflinger中的onMessageReceived方法
//SurfaceFlinger.cppvoid SurfaceFlinger: nMessageReceived(int32_t what, nsecs_t expectedVSyncTime) { ATRACE_CALL(); switch (what) { case MessageQueue::INVALIDATE: { onMessageInvalidate(expectedVSyncTime); break; } case MessageQueue::REFRESH: { onMessageRefresh(); break; } }}这里摘录一个bufferqueue的acquireBuffer方法时的堆栈
vsync革新信号过来onMessageReceived收到消息后,bufferqueue开始处理处罚图像队列
04-19 19:33:38.926 666 666 E acquireBuffer: #00 pc 0004d34f /system/lib/libgui.so (android::BufferQueueConsumer::acquireBuffer(android::BufferItem*, long long, unsigned long long)+74)04-19 19:33:38.926 666 666 E acquireBuffer: #01 pc 000645cf /system/lib/libgui.so (android::ConsumerBase::acquireBufferLocked(android::BufferItem*, long long, unsigned long long)+62)04-19 19:33:38.926 666 666 E acquireBuffer: #02 pc 0007a7a1 /system/lib/libsurfaceflinger.so (android::FramebufferSurface::advanceFrame(bool)+112)04-19 19:33:38.926 666 666 E acquireBuffer: #03 pc 000edf1f /system/lib/libsurfaceflinger.so (android::compositionengine::impl::RenderSurface::queueBuffer(android::base::unique_fd_impl<android::base: efaultCloser>, bool)+358)04-19 19:33:38.926 666 666 E acquireBuffer: #04 pc 000e46e7 /system/lib/libsurfaceflinger.so (android::compositionengine::impl::Output::finishFrame(android::compositionengine::CompositionRefreshArgs const&)+454)04-19 19:33:38.926 666 666 E acquireBuffer: #05 pc 000de3e5 /system/lib/libsurfaceflinger.so (android::compositionengine::impl: isplay::finishFrame(android::compositionengine::CompositionRefreshArgs const&)+72)04-19 19:33:38.926 666 666 E acquireBuffer: #06 pc 000e3011 /system/lib/libsurfaceflinger.so (android::compositionengine::impl::Output::present(android::compositionengine::CompositionRefreshArgs const&)+92)04-19 19:33:38.926 666 666 E acquireBuffer: #07 pc 000dcfa1 /system/lib/libsurfaceflinger.so (android::compositionengine::impl::CompositionEngine::present(android::compositionengine::CompositionRefreshArgs&)+144)04-19 19:33:38.926 666 666 E acquireBuffer: #08 pc 000baf81 /system/lib/libsurfaceflinger.so (android::SurfaceFlinger: nMessageRefresh()+1280)04-19 19:33:38.926 666 666 E acquireBuffer: #09 pc 000b8b1d /system/lib/libsurfaceflinger.so (android::SurfaceFlinger: nMessageReceived(int, long long)+52)四、surfaceflinger绘制流程
4.1、wms和surfaceflinger创建surface流程
4.1.1、wms和surfaceflinger创建毗连
要体现的页面通过window告诉surfaceflinger创建surface来绘图,这个surface就是一个layer(layer的核心就是buffer queue);
surfaceflinger创建的bufferqueue不会转达到app,而是通过内存共享直接供app绘制。bufferqueue都不会转达;
那么这一节内容我们来讲讲这个流程
//WMSpublic int addWindow(Session session, IWindow client, int seq, WindowManager.LayoutParams attrs, int viewVisibility, int displayId, Rect outContentInsets, Rect outStableInsets, Rect outOutsets, InputChannel outInputChannel) { win.attach(); // WindowState}// WindowState.attchvoid attach() { mSession.windowAddedLocked();}void windowAddedLocked(String packageName) { if (mSurfaceSession == null) { mSurfaceSession = new SurfaceSession(); }}// SurfaceSession.javaprivate long mNativeClient; // SurfaceComposerClient*/** Create a new connection with the surface flinger. */public SurfaceSession() { mNativeClient = nativeCreate();}// frameworks/base/core/jni/android_view_SurfaceSession.cppstatic jlong nativeCreate(JNIEnv* env, jclass clazz) { SurfaceComposerClient* client = new SurfaceComposerClient(); client->incStrong((void*)nativeCreate); return reinterpret_cast<jlong>(client);}void SurfaceComposerClient: nFirstRef() { sp<ISurfaceComposerClient> conn = (rootProducer != nullptr) ? sf->createScopedConnection(rootProducer) : sf->createConnection(); if (conn != 0) { mClient = conn; } // ...}sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() { return initClient(new Client(this)); // initClient方法只是调用initCheck查抄了一下}上面截取了一段流程代码:
1>、从我们熟知的addwindow开始,WindowSate体现一个window;
2>、mSurfaceSession体现一个跟surfaceflinger的毗连,此中SurfaceComposerClient就是体现毗连的指针;
3>、末了创建的Client实现ISurfaceComposerClient的aidl,它可以创建Surface,并且维护一个应用步调的全部Layer;
4.1.2、Surface创建对应Layer
// ViewRootImpl.javapublic final Surface mSurface = new Surface();一个ViewRootImpl对应一个Surface(上层surface),而Surface 在 SurfaceFlinger 中对应的实体是 Layer 对象。 1>、一个Vsync信号(vysnc发起页面革新流程)实验ViewRootImpl.performTraversals private void performTraversals() { relayoutWindow(params, viewVisibility, insetsPending) // measure, layout, draw}private int relayoutWindow(...) throws RemoteException { // 末了一个参数 mSurface 就是之前创建的 Surface 对象 mWindowSession.relayout(mWindow, ..., mSurface);}// WMSpublic int relayoutWindow(Session session, ..., Surface outSurface) { result = createSurfaceControl(outSurface, result, win, winAnimator);}private int createSurfaceControl(Surface outSurface, int result, WindowState win, WindowStateAnimator winAnimator) { WindowSurfaceController surfaceController = winAnimator.createSurfaceLocked(win.mAttrs.type, win.mOwnerUid); if (surfaceController != null) { surfaceController.getSurface(outSurface); } else { outSurface.release(); } return result;}上面这一段紧张是为了阐明relayoutWindow会createSurfaceControl
2>、surface的layer创建由SurfaceControl来举行
private SurfaceControl(...) { // 返回 native SurfaceControl 指针 mNativeObject = nativeCreate(session, name, w, h, format, flags, parent != null ? parent.mNativeObject : 0, windowType, ownerUid);}// frameworks/base/core/jni/android_view_SurfaceControl.cppstatic jlong nativeCreate(...) { // client 即wms和surfaceflinger创建毗连时的SurfaceComposerClient指针 sp<SurfaceComposerClient> client(android_view_SurfaceSession_getClient(env, sessionObj)); client->createSurfaceChecked(String8(name.c_str()), w, h, format, &surface, flags, parent, windowType, ownerUid);}// framework/native/libs/gui/SurfaceComposerClient.cppstatus_t SurfaceComposerClient::createSurfaceChecked(..., sp<SurfaceControl>* outSurface, ...) { err = mClient->createSurface(name, w, h, format, flags, parentHandle, std::move(metadata), &handle, &gbp, &id, &transformHint);}//framework/native/services/surfaceflinger/Client.cppstatus_t Client::createSurface(...) { return mFlinger->createLayer(name, this, w, h, format, flags, std::move(metadata), handle, gbp, parentHandle, outLayerId, nullptr, outTransformHint);}这里来来回回末了还是SurfaceComposerClient指针构造了createSurface,即创建了surface对应的layer
4.1.3、上层surface和Layer对应起来
createSurfaceControl创建了layer,接着立马getSurface创建对应关系
由于上层创建的surface还是一个空的对象,copyFrom即是就是添补了surface的内容
接上面4.1.2中createSurfaceControl方法中的surfaceController.getSurface(outSurface)
// outSurface是上层ViewRootImpl创建的surfacevoid getSurface(Surface outSurface) { outSurface.copyFrom(mSurfaceControl);}// Surface.javapublic void copyFrom(SurfaceControl other) { long surfaceControlPtr = other.mNativeObject; // mNativeObject是4.2.2 小结 SurfaceControl创建时返回的指针 long newNativeObject = nativeGetFromSurfaceControl(surfaceControlPtr); synchronized (mLock) { if (mNativeObject != 0) { nativeRelease(mNativeObject); } // 把指针赋值给mNativeObject setNativeObjectLocked(newNativeObject); }}private void setNativeObjectLocked(long ptr) { if (mNativeObject != ptr) { mNativeObject = ptr; if (mHwuiContext != null) { mHwuiContext.updateSurface(); } }}// frameworks/base/core/jni/android_view_Surface.cppstatic jlong nativeGetFromSurfaceControl(JNIEnv* env, jclass clazz, jlong surfaceControlNativeObj) { // java指针和底层指针的转换 sp<SurfaceControl> ctrl(reinterpret_cast<SurfaceControl *>(surfaceControlNativeObj)); sp<Surface> surface(ctrl->getSurface()); if (surface != NULL) { surface->incStrong(&sRefBaseOwner); } return reinterpret_cast<jlong>(surface.get());}sp<Surface> SurfaceControl::getSurface() const{ Mutex::Autolock _l(mLock); if (mSurfaceData == 0) { return generateSurfaceLocked(); } return mSurfaceData;}sp<Surface> SurfaceControl::generateSurfaceLocked() const{ // mGraphicBufferProducer 是上面创建的 gbp 对象 // 这里new surface实际是底层的surface mSurfaceData = new Surface(mGraphicBufferProducer, false); return mSurfaceData;}1、nativeGetFromSurfaceControl 返回native Suface的指针,指针的值赋给SurfaceControl.mNativeObject
2、上层surface调用copyFrom添补内容时,实际就是拿到了SurfaceControl了,也拥有了底层的surface指针,子集关系。
4.2、Vysnc流程
4.2.1 几点概念
1、VSYNC 信号可同步体现流水线。体现流水线由应用渲染、SurfaceFlinger 合成以及用于在屏幕上体现图像的硬件肴杂渲染器 (HWC) 构成。
2、VSYNC 可同步应用叫醒以开始渲染的时间、SurfaceFlinger 叫醒以合成屏幕的时间以及屏幕革新周期。这种同步可以消除卡顿,并提升图形的视觉体现。
3、vysnc的引入,可以及时的告知cpu/gpu停息别的变乱,及时处理处罚体现的这一帧。从而淘汰卡顿发生。
4、三级缓存:vsync+三级缓存,当第n+1处理处罚不外来的时间,由于有三次缓存数据,纵然n+1卡顿,或者n+1和n+2卡顿,只要没有连着卡三次,都有缓存可以拿,UI上就不会造成卡顿。
4.2.2 DispSync
DispSync 维护屏幕基于硬件的周期性 VSYNC 变乱的模子
我们一共有三个信号,HW_VYNC_0 是硬件产生的同步信号
DispSync则负责产生由Choreographer 和 SurfaceFlinger 使用的 VSYNC 和 SF_VSYNC 信号,不管是否吸收到HW_VYSNC_0都会产生,HW_VYSNC_0只是起到参考作用
4.2.3 Vync的偏移
HW_VSYNC_0 - 屏幕开始体现下一帧。
VSYNC - 应用读取输入内容并天生下一帧。
SF_VSYNC - SurfaceFlinger 开始为下一帧举行合成
VSYNC_EVENT_PHASE_OFFSET_NS 和 SF_VSYNC_EVENT_PHASE_OFFSET_NS 对应phase-app和phase-sf,默认都为0
偏移量的参加是为了淘汰耽误,我们以正常情况来讲,一帧16.6ms就能渲染完成。App可以在phase-sf - phase-app时间内完成绘制,SurfaceFlinger可以在VSync周期 - phase-sf时间内完成合成,那么在下一个VSync信号时就可以上屏,即帧耽误为16ms。如许抱负情况下,耽误就被控制成了一帧。
如果app绘制超时,sf就会在下一帧绘制,增长了一帧的周期。以是一样平常情况下,体系都会将phase-sf - phase-app设置为VSync周期。如许不管出现怎样的耽误征象,sf的耽误周期都是控制为一帧一帧的增长。
4.2.4 Vync代码流程
简述整个过程:
1、整个Vsync流程是从HWC监听硬件产生的Vsync开始,由DispSync维护VSYNC模子,Vsync信号是不绝存在的。
2、app哀求vsync
一个页面并不是无时无刻都在革新,当触摸view发生厘革,哀求核心,开始动画或者startActivity等等时,ViewRootImpl会调用scheduleTraversals流程,这个流程会让app吸收下一个Vsync信号。
就是不管哪个方式革新view都是scheduleTraversals来触发
scheduleTraversals -> mChoreographer.postCallback() -> doScheduleVsync -> scheduleVsyncLocked -> nativeScheduleVsync -> requestNextVsync()3、app吸收vsync
收到信号后会控制view通过performTraversals方法绘制三大流程
onVsync -> doFrame -> TraversalRunnable -> doTraversal() -> performTraversals()4.2.4.1 Vsync初始化
分几个部门:
1、initScheduler 初始化vysnc机制
2、createVsyncSchedule:VSyncTracker、VSyncDispatch、VsyncController
initScheduler部门
//frameworks/native/services/surfaceflinger/DisplayHardware/HWC2.hstruct ComposerCallback { // 热插拔变乱 virtual void onComposerHalHotplug(hal::HWDisplayId, hal::Connection) = 0; // refresh 革新变乱 virtual void onComposerHalRefresh(hal::HWDisplayId) = 0; // VSYNC信号变乱 virtual void onComposerHalVsync(hal::HWDisplayId, int64_t timestamp, std: ptional<hal::VsyncPeriodNanos>) = 0;};//frameworks/native/services/surfaceflinger/SurfaceFlinger.cppvoid SurfaceFlinger::init() { mCompositionEngine->setTimeStats(mTimeStats); mCompositionEngine->setHwComposer(getFactory().createHWComposer(mHwcServiceName)); // init方法注册回调开始,注册回调会立马触发onComposerHalHotplug方法 mCompositionEngine->getHwComposer().setCallback(this); }//frameworks/native/services/surfaceflinger/SurfaceFlinger.cppvoid SurfaceFlinger: nComposerHalHotplug(hal::HWDisplayId hwcDisplayId, hal::Connection connection) { if (std::this_thread::get_id() == mMainThreadId) { // Process all pending hot plug events immediately if we are on the main thread. processDisplayHotplugEventsLocked(); // 主线程中去处理处罚 hot plug evnets }}//frameworks/native/services/surfaceflinger/SurfaceFlinger.cppvoid SurfaceFlinger::processDisplayHotplugEventsLocked() { if (event.connection == hal::Connection::CONNECTED) { if (event.hwcDisplayId == getHwComposer().getInternalHwcDisplayId()) { initScheduler(state); // 初始化Scheduler }}上面这部门代码initScheduler流程,是Vsync初始开始的地方,代码是从surfaceflinger::init开始,给HWC setCallback,直接回调hotplag热插拔,开始Scheduler的初始化
接下来就是initScheduler详细内容:
void SurfaceFlinger::initScheduler(const DisplayDeviceState& displayState) { if (mScheduler) { // In practice it's not allowed to hotplug in/out the primary display once it's been // connected during startup, but some tests do it, so just warn and return. ALOGW("Can't re-init scheduler"); return; } const auto displayId = displayState.physical->id; scheduler::RefreshRateConfigs::Config config = {.enableFrameRateOverride = android::sysprop::enable_frame_rate_override(false), .frameRateMultipleThreshold = base::GetIntProperty("debug.sf.frame_rate_multiple_threshold", 0)}; // 设置信息,革新率革新周期Period mRefreshRateConfigs = std::make_unique<scheduler::RefreshRateConfigs>(displayState.physical->supportedModes, displayState.physical->activeMode ->getId(), config); const auto currRefreshRate = displayState.physical->activeMode->getFps(); // fps信息 mRefreshRateStats = std::make_unique<scheduler::RefreshRateStats>(*mTimeStats, currRefreshRate, hal: owerMode::OFF); // 不同分辨率下的VSYNC设置信息 mVsyncConfiguration = getFactory().createVsyncConfiguration(currRefreshRate); mVsyncModulator = sp<VsyncModulator>::make(mVsyncConfiguration->getCurrentConfigs()); // 创建Scheduler对象 mScheduler = getFactory().createScheduler(*mRefreshRateConfigs, *this); const auto configs = mVsyncConfiguration->getCurrentConfigs(); const nsecs_t vsyncPeriod = currRefreshRate.getPeriodNsecs(); //创建一个名字为app的connection mAppConnectionHandle = mScheduler->createConnection("app", mFrameTimeline->getTokenManager(), /*workDuration=*/configs.late.appWorkDuration, /*readyDuration=*/configs.late.sfWorkDuration, impl::EventThread::InterceptVSyncsCallback()); //创建一个名字为appsf的connection mSfConnectionHandle = mScheduler->createConnection("appSf", mFrameTimeline->getTokenManager(), /*workDuration=*/std::chrono::nanoseconds(vsyncPeriod), /*readyDuration=*/configs.late.sfWorkDuration, [this](nsecs_t timestamp) { mInterceptor->saveVSyncEvent(timestamp); }); //initVsync紧张作用是绑定一个回调函数 MessageQueue::vsyncCallback 到VSyncDispatch上,回调名字"sf" mEventQueue->initVsync(mScheduler->getVsyncDispatch(), *mFrameTimeline->getTokenManager(), configs.late.sfWorkDuration); mRegionSamplingThread = new RegionSamplingThread(*this, RegionSamplingThread::EnvironmentTimingTunables()); mFpsReporter = new FpsReporter(*mFrameTimeline, *this); mScheduler->onPrimaryDisplayModeChanged(mAppConnectionHandle, displayId, displayState.physical->activeMode->getId(), vsyncPeriod); static auto ignorePresentFences = base::GetBoolProperty("debug.sf.vsync_reactor_ignore_present_fences"s, false); mScheduler->setIgnorePresentFences( ignorePresentFences || getHwComposer().hasCapability(hal::Capability: RESENT_FENCE_IS_NOT_RELIABLE));}简述流程:
1、HwComposer注册回调会立马触发onComposerHalHotplug方法,热插拔立马initScheduler
2、设置fps、革新周期、Vsync信息、app/sf偏移量、创建Scheduler、sf/appSf/app 三个callback
createVsyncSchedule
struct VsyncSchedule { std::unique_ptr<scheduler::VsyncController> controller; std::unique_ptr<scheduler::VSyncTracker> tracker; std::unique_ptr<scheduler::VSyncDispatch> dispatch; };Scheduler::VsyncSchedule Scheduler::createVsyncSchedule(bool supportKernelTimer) { auto clock = std::make_unique<scheduler::SystemClock>(); auto tracker = createVSyncTracker(); auto dispatch = createVSyncDispatch(*tracker); // TODO(b/144707443): Tune constants. constexpr size_t pendingFenceLimit = 20; auto controller = std::make_unique<scheduler::VSyncReactor>(std::move(clock), *tracker, pendingFenceLimit, supportKernelTimer); return {std::move(controller), std::move(tracker), std::move(dispatch)};}创建VSyncTracker、VSyncDispatch、VsyncController封装到VsyncSchedule并返回
名称作用VSyncTracker根据硬件的Vysnc、汗青数据创建一个Vsync模子,推测Vsync信号VSyncDispatch分发Vsync回调VsyncController共同tracker采样Connectionapp,appSf,sf三个监听vysnc初始化部门紧张先容创建了哪些东西,vysnc运行机制的干系主角根本都列出来了。接下来我们先讲App哀求Vsync和app吸收Vsync。然后解说Vsync的运作。
4.2.4.2、App哀求Vsync
前面有简单提到app怎么开始哀求vsync:
scheduleTraversals -> mChoreographer.postCallback() -> doScheduleVsync -> scheduleVsyncLocked -> nativeScheduleVsync -> requestNextVsync()本文先容的重点是surfaceflinger,以是我们来详细看下哀求这个过程,surfaceflinger做了什么,java层也比力简单,跟着上面的流程去追一下就好。
DisplayEventReceiver.javapublic void scheduleVsync() { ... nativeScheduleVsync(mReceiverPtr); }///android_view_DisplayEventReceiver.cppstatic void nativeScheduleVsync(JNIEnv* env, jclass clazz, jlong receiverPtr) { sp<NativeDisplayEventReceiver> receiver = reinterpret_cast<NativeDisplayEventReceiver*>(receiverPtr); status_t status = receiver->scheduleVsync(); ...}//DisplayEventDispatcher.cppstatus_t DisplayEventDispatcher::scheduleVsync() { ... status_t status = mReceiver.requestNextVsync(); ... return OK;}//DisplayEventReceiver.cppstatus_t DisplayEventReceiver::requestNextVsync() { if (mEventConnection != nullptr) { mEventConnection->requestNextVsync(); return NO_ERROR; } return NO_INIT;}///EventThread.cpp void EventThread::requestNextVsync(const sp<EventThreadConnection>& connection) { if (connection->resyncCallback) { connection->resyncCallback(); } std::lock_guard<std::mutex> lock(mMutex); if (connection->vsyncRequest == VSyncRequest::None) { connection->vsyncRequest = VSyncRequest::Single; mCondition.notify_all(); } else if (connection->vsyncRequest == VSyncRequest::SingleSuppressCallback) { connection->vsyncRequest = VSyncRequest::Single; }}App哀求sync的流程,紧张还是一个间接调用。在mCondition.notify_all叫醒锁后,继续后边的流程
4.2.4.3、App吸收Vsync
//EventThread.cpp void EventThread::threadMain(std::unique_lock<std::mutex>& lock) { DisplayEventConsumers consumers; //1、如果队列不为空取一次vsync的event变乱出来 if (!mPendingEvents.empty()) { event = mPendingEvents.front(); mPendingEvents.pop_front(); ... //2、先取出一个connection ,然后用shouldConsumeEvent判定是否发送到connection //这里无穷循环,会取出全部需要分发消息的connection auto it = mDisplayEventConnections.begin(); while (it != mDisplayEventConnections.end()) { if (const auto connection = it->promote()) { vsyncRequested |= connection->vsyncRequest != VSyncRequest::None; if (event && shouldConsumeEvent(*event, connection)) { consumers.push_back(connection); } } else { it = mDisplayEventConnections.erase(it); } } ... //3、前面两个都满足了consumers就不为空,就开始分发 if (!consumers.empty()) { dispatchEvent(*event, consumers); consumers.clear(); } ... //4、上述两个条件没有满足,会走到这里wait,直到有哀求来notify叫醒,也就是上面的notify_all if (mState == State::Idle) { mCondition.wait(lock); }1、如许EventThread就起到了一个有哀求才会vsync的监测作用。
2、留意consumers是全部需要分发dispatchEvent的connection合集
3、继续dispatchEvent流程
//EventThread.cppvoid EventThread::dispatchEvent(const DisplayEventReceiver::Event& event, const DisplayEventConsumers& consumers) { for (const auto& consumer : consumers) { switch (consumer->postEvent(copy)) {status_t EventThreadConnection::postEvent(const DisplayEventReceiver::Event& event) { constexpr auto toStatus = [](ssize_t size) { ... auto size = DisplayEventReceiver::sendEvents(&mChannel, mPendingEvents.data(), mPendingEvents.size()); //DisplayEventReceiver.cpp ssize_t DisplayEventReceiver::sendEvents(gui::BitTube* dataChannel, Event const* events, size_t count){ return gui::BitTube::sendObjects(dataChannel, events, count);}//BitTube.cpp ssize_t BitTube::sendObjects(BitTube* tube, void const* events, size_t count, size_t objSize) { const char* vaddr = reinterpret_cast<const char*>(events); ssize_t size = tube->write(vaddr, count * objSize);}ssize_t BitTube::write(void const* vaddr, size_t size) { ssize_t err, len; do { len = ::send(mSendFd, vaddr, size, MSG_DONTWAIT | MSG_NOSIGNAL); // cannot return less than size, since we're using SOCK_SEQPACKET err = len < 0 ? errno : 0; } while (err == EINTR); return err == 0 ? len : -err;}int BitTube::getFd() const { return mReceiveFd;}这里稍作表明:
1、dispatchEvent流程一层一层调用会通过BitTube来转达信息
2、BitTube用Linux/Unix中的socketpair举行跨历程数据转达,
3、成员变量mReceiveFd,看起来是一个吸收端,实际上这个fd也可以用来发送,同样mSendFd也可以用来吸收,只是BitTube是按照单向方式使用它的:一端写入数据,另一端读出数据
4、这里我们可以简单明白为mSendFd用来发送,mReceiveFd对端用来吸收。
//DisplayEventDispatcher.cppstatus_t DisplayEventDispatcher::initialize() { ... int rc = mLooper->addFd(mReceiver.getFd(), 0, Looper::EVENT_INPUT, this, NULL);}int DisplayEventDispatcher::handleEvent(int, int events, void*) { ... // Drain all pending events, keep the last vsync. nsecs_t vsyncTimestamp; PhysicalDisplayId vsyncDisplayId; uint32_t vsyncCount; VsyncEventData vsyncEventData; //processPendingEvents取出一个有用的sync event if (processPendingEvents(&vsyncTimestamp, &vsyncDisplayId, &vsyncCount, &vsyncEventData)) { mWaitingForVsync = false; //分发 dispatchVsync(vsyncTimestamp, vsyncDisplayId, vsyncCount, vsyncEventData);} void NativeDisplayEventReceiver::dispatchVsync(nsecs_t timestamp, PhysicalDisplayId displayId, uint32_t count, VsyncEventData vsyncEventData) { JNIEnv* env = AndroidRuntime::getJNIEnv(); ScopedLocalRef<jobject> receiverObj(env, jniGetReferent(env, mReceiverWeakGlobal)); if (receiverObj.get()) { ALOGV("receiver %p ~ Invoking vsync handler.", this); // 调用到java层dispatchVsync方法 env->CallVoidMethod(receiverObj.get(), gDisplayEventReceiverClassInfo.dispatchVsync, timestamp, displayId.value, count, vsyncEventData.id, vsyncEventData.deadlineTimestamp, vsyncEventData.frameInterval); ALOGV("receiver %p ~ Returned from vsync handler.", this); } mMessageQueue->raiseAndClearException(env, "dispatchVsync");}//DisplayEventReceiver.java@SuppressWarnings("unused")private void dispatchVsync(long timestampNanos, long physicalDisplayId, int frame, long frameTimelineVsyncId, long frameDeadline, long frameInterval) { onVsync(timestampNanos, physicalDisplayId, frame, new VsyncEventData(frameTimelineVsyncId, frameDeadline, frameInterval));}public void onVsync(long timestampNanos, long physicalDisplayId, int frame, VsyncEventData vsyncEventData) { ... mTimestampNanos = timestampNanos; mFrame = frame; mLastVsyncEventData = vsyncEventData; Message msg = Message.obtain(mHandler, this); msg.setAsynchronous(true); mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS); private final class FrameHandler extends Handler { public FrameHandler(Looper looper) { super(looper); } @Override public void handleMessage(Message msg) { switch (msg.what) { case MSG_DO_FRAME: doFrame(System.nanoTime(), 0, new DisplayEventReceiver.VsyncEventData()); break; case MSG_DO_SCHEDULE_VSYNC: doScheduleVsync(); break; case MSG_DO_SCHEDULE_CALLBACK: doScheduleCallback(msg.arg1); break; } }}吸收流程
1、有vysnc哀求,有需要发送的connection,下一次vysnc event开始dispatchevent
2、dispatchevent间接由DisplayEventDispatcher来负责分发
3、分发时,间接调用java层dispatchVsync,由上层控制绘制view
4.2.4.4、surfaceflinger吸收Vsync
1、有了上面app收发,根本就明白vsync是怎么被分发出去了。
2、在initScheduler流程时,实际我们创建了三个监听app、appSf、sf,app就是app的收发,appSf这个监听紧张为surfaceflinger的工作线程服务,sf则用来关照surfaceflinger合成体现流程
3、接着surfaceflinger::initScheduler
mEventQueue->initVsync(mScheduler->getVsyncDispatch(), *mFrameTimeline->getTokenManager(), configs.late.sfWorkDuration);///MessageQueue.cppvoid MessageQueue::setInjector(sp<EventThreadConnection> connection) { ... mLooper->addFd( tube.getFd(), 0, Looper::EVENT_INPUT, [](int, int, void* data) { reinterpret_cast<MessageQueue*>(data)->injectorCallback(); return 1; // Keep registration. }, this); } void MessageQueue::Handler::handleMessage(const Message& message) { switch (message.what) { case INVALIDATE: mEventMask.fetch_and(~eventMaskInvalidate); mQueue.mFlinger->onMessageReceived(message.what, mVsyncId, mExpectedVSyncTime); break; case REFRESH: mEventMask.fetch_and(~eventMaskRefresh); mQueue.mFlinger->onMessageReceived(message.what, mVsyncId, mExpectedVSyncTime); break; }}//SurfaceFlinger.cppvoid SurfaceFlinger: nMessageReceived(int32_t what, int64_t vsyncId, nsecs_t expectedVSyncTime) { switch (what) { case MessageQueue::INVALIDATE: { onMessageInvalidate(vsyncId, expectedVSyncTime); break; } case MessageQueue::REFRESH: { onMessageRefresh(); break; } }}网上许多文章都是从SurfaceFlinger::onMessageReceived
surfaceflinger绘制流程小结
本节紧张讲两个部门
第一部门:app的layer如何和surfaceflinger毗连起来
第二部门:vsync分发流程
Vsync流程
1、代码流程从如何从HWC吸收Vsync信号开始
2、initScheduler初始化部门、app哀求Vsync、app吸收Vsync、surfaceflinger吸收Vysnc 四个部门流程团结
3、EventThread监听Vsync、connection创建毗连、Choreographer衔接app和surfaceflinger、Dispatcher分发vsync
4、这里挑选的都是vsync比力主线的几个流程,理清他们,明白vsync分发应该没题目。
5、尚有一个从hwc转达vsync到eventthread这个流程有爱好的可以本身去阅读一下源码
整条线:
app startactivity时创建surface和底层layer的毗连,app开始绘制时哀求下一个vysnc信号,vsync信号分发回app,app开始把视图绘制到layer,末了送显
五、写在末了
本文紧张讲了文章开头提到的,surfaceflinger的初始化,底层handler消息机制,surfaceflinger的绘制流程(surface和layer毗连&vsync分发)。盼望通过本篇文章,能对surfaceflinger总体有个清楚的认知。
read the fucking source code! |