优化算法matlab实现(二十八)蝗虫算法matlab实现

手机游戏开发者 2024-9-30 06:34:45 88 0 来自 中国
留意:此代码实现的是求目的函数最大值,求最小值可将适应度函数乘以-1(框架代码已实现)。
留意:此代码实现的是求目的函数最大值,求最小值可将适应度函数乘以-1(框架代码已实现)。
留意:此代码实现的是求目的函数最大值,求最小值可将适应度函数乘以-1(框架代码已实现)。

1.代码实现

不相识蝗虫算法可以先看看优化算法条记(二十八)蝗虫算法
实现代码前必要先完成优化算法matlab实现(二)框架编写中的框架的编写。
文件名形貌..\optimization algorithm\frame\Unit.m个体..\optimization algorithm\frame\Algorithm_Impl.m算法主体以及优化算法matlab实现(四)测试粒子群算法中的测试函数、函数图像的编写。
文件名形貌..\optimization algorithm\frame\Get_Functions_details.m测试函数,求值用..\optimization algorithm\frame\func_plot.m函数图像,绘图用蝗虫算法的个体没有独有属性。
蝗虫算法个体
文件名:.. \optimization algorithm\algorithm_grasshopper\GOA_Unit.m
% 蝗虫算法个体classdef GOA_Unit < Unit        properties    end        methods        function self = GOA_Unit()        end    end end蝗虫算法算法主体
文件名:..\optimization algorithm\algorithm_grasshopper\GOA_Base.m
% 蝗虫算法classdef GOA_Base  < Algorithm_Impl        properties        % 算法名称        name = 'GOA';    end        % 外部可调用的方法    methods        function self = GOA_Base(dim,size,iter_max,range_min_list,range_max_list)            % 调用父类构造函数            self@Algorithm_Impl(dim,size,iter_max,range_min_list,range_max_list);            self.name ='GOA';        end    end        % 继续重写父类的方法    methods (Access = protected)        % 初始化种群        function init(self)            init@Algorithm_Impl(self)            %初始化种群            for i = 1:self.size                unit = GOA_Unit();                % 随机初始化位置:rand(0,1).*(max-min)+min                unit.position = unifrnd(self.range_min_list,self.range_max_list);                % 盘算适应度值                unit.value = self.cal_fitfunction(unit.position);                % 将个体加入群体数组                self.unit_list = [self.unit_list,unit];            end        end                % 每一代的更新        function update(self,iter)            update@Algorithm_Impl(self,iter)            % 获取最优个体id            best_id = self.get_best_id();            % 获取该代的变量c            c = self.get_c(iter);            for i = 1:self.size                % 获取每一维的最大隔断                dist_dim_max = self.get_dist_dim_max(i) + realmin('double');                new_pos = zeros(1,self.dim);                for j = 1:self.size                    if  i == j                        continue                    end                    % 获取两个体间隔断,加上较小数,避免分母为0                    distance = self.get_distance(i,j)+ realmin('double');                    dist_dim = abs(self.unit_list(i).position-self.unit_list(j).position);                                        % 将隔断归一化到1-4                    dis_dim_norm = self.norm(1,4,dist_dim,dist_dim_max);                    dist_ij = (self.unit_list(i).position-self.unit_list(j).position);                    new_pos = new_pos + self.get_s(dis_dim_norm).*dist_ij./distance;                end                                new_pos = c^2*(self.range_max_list-self.range_min_list)/2.*new_pos+self.unit_list(best_id).position;                                % 越界查抄                new_pos = self.get_out_bound_value(new_pos);                new_value = self.cal_fitfunction(new_pos);                % 贪婪一下                if new_value > self.unit_list(i).value                    self.unit_list(i).value = new_value;                    self.unit_list(i).position = new_pos;                end            end                    end                % 获取每一维上距其他个体的最大隔断        function dist_dim_max = get_dist_dim_max(self,i)            dist_dim_max = zeros(1,self.dim);            for j = 1:self.size                if i == j                    continue                end                dist_dim = abs(self.unit_list(i).position-self.unit_list(j).position);                I = dist_dim>dist_dim_max;                dist_dim_max(I) = dist_dim(I);            end        end                % 获取隔断其他个体的隔断(欧式)        function distance = get_distance(self,i,j)            distance = sqrt(sum((self.unit_list(i).position - self.unit_list(j).position).^2));        end                % 归一化,将值归一化到[min,max]区间内        function result = norm(self,min,max,value,value_max)            result = min + (max-min).*value./value_max;        end                % 变量c        function c = get_c(self,iter)            c_max = 1;            c_min = 0.00001;            c = c_max-iter*(c_max-c_min)/self.iter_max;        end                % 函数s        function s = get_s(self,x)            f = 0.5;            l = 1.5;            s = f*exp(-x/l) - exp(-x);        end                % 获取当前最优个体的id        function best_id=get_best_id(self)            % 求最大值则降序分列            [value,index] = sort([self.unit_list.value],'descend');            best_id = index(1);        end            endend文件名:..\optimization algorithm\algorithm_grasshopper\GOA_Impl.m
算法实现,继续于Base,图方便也可不写,直接用GOA_Base,这里为了定名划一。
% 蝗虫算法实现classdef GOA_Impl < GOA_Base       % 外部可调用的方法    methods        function self = GOA_Impl(dim,size,iter_max,range_min_list,range_max_list)            % 调用父类构造函数设置参数             self@GOA_Base(dim,size,iter_max,range_min_list,range_max_list);        end    end end2.测试

测试F1
文件名:..\optimization algorithm\algorithm_grasshopper\Test.m
%% 整理之前的数据% 扫除全部数据clear all;% 扫除窗口输出clc;%% 添加目次% 将上级目次中的frame文件夹加入路径addpath('../frame')%% 选择测试函数Function_name='F1';%[最小值,最大值,维度,测试函数][lb,ub,dim,fobj]=Get_Functions_details(Function_name);%% 算法实例% 种群数目size = 50;% 最大迭代次数iter_max = 1000;% 取值范围上界range_max_list = ones(1,dim).*ub;% 取值范围下界range_min_list = ones(1,dim).*lb;% 实例化蝗虫算法类base = GOA_Impl(dim,size,iter_max,range_min_list,range_max_list);base.is_cal_max = false;% 确定适应度函数base.fitfunction = fobj;% 运行base.run();disp(base.cal_fit_num);%% 绘制图像figure('Position',[500 500 660 290])%Draw search spacesubplot(1,2,1);func_plot(Function_name);title('Parameter space')xlabel('x_1');ylabel('x_2');zlabel([Function_name,'( x_1 , x_2 )'])%Draw objective spacesubplot(1,2,2);% 绘制曲线,由于算法是求最大值,适应度函数为求最小值,故乘了-1,此时去掉-1semilogy((base.value_best_history),'Color','r')title('Objective space')xlabel('Iteration');ylabel('Best score obtained so far');% 将坐标轴调解为紧凑型axis tight% 添加网格grid on% 四边都表现刻度box offlegend(base.name)display(['The best solution obtained by ',base.name ,' is ', num2str(base.value_best)]);display(['The best optimal value of the objective funciton found by ',base.name ,' is ', num2str(base.position_best)]); 1.png
您需要登录后才可以回帖 登录 | 立即注册

Powered by CangBaoKu v1.0 小黑屋藏宝库It社区( 冀ICP备14008649号 )

GMT+8, 2024-11-23 17:26, Processed in 0.189681 second(s), 35 queries.© 2003-2025 cbk Team.

快速回复 返回顶部 返回列表